Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 295: 113143, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214790

RESUMEN

If biochar is applied to soil or stormwater treatment media, the saturated hydraulic conductivity (K) may be altered, which is a critical property affecting media performance. While a significant number of studies document biochar's effect on a porous medium's K, predictive models are lacking. Herein models are advanced for predicting K for repacked natural soil and engineered media when amended with biochar of various particle sizes and application rates. Experiments were conducted using three repacked natural soils, two uniform sands, and a bioretention medium amended with a wood biochar sieved to seven different biochar particle size distributions and applied at three rates. Experimental measurements showed a strong positive correlation between the interporosity of each medium and K. Across all media, the classic Kozeny-Carman (K-C) model predicted K and the relative change in K because of biochar amendment for each medium best. For soils alone, a recently developed model based on existing pedotransfer functions was optimal. The K-C model error was improved if the particle specific surface area was increased for large biochar particles, which indicates the importance of biochar particle shape on pore structure and K. X-ray Computed Tomography was coupled with pore network modeling to explain the unexpected decrease in K for sands amended with medium and large biochar. While biochar increased interporosity, mean pore radii decreased by ~25% which reduced K. The X-ray measurements and pore network modeling help to explain anomalous results reported for biochar-amended sands in other studies.


Asunto(s)
Lluvia , Purificación del Agua , Carbón Orgánico , Suelo , Abastecimiento de Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-32532012

RESUMEN

Various environmental factors influence the outbreak and spread of epidemic or even pandemic events which, in turn, may cause feedbacks on the environment. The novel coronavirus disease (COVID-19) was declared a pandemic on 13 March 2020 and its rapid onset, spatial extent and complex consequences make it a once-in-a-century global disaster. Most countries responded by social distancing measures and severely diminished economic and other activities. Consequently, by the end of April 2020, the COVID-19 pandemic has led to numerous environmental impacts, both positive such as enhanced air and water quality in urban areas, and negative, such as shoreline pollution due to the disposal of sanitary consumables. This study presents an early overview of the observed and potential impacts of the COVID-19 on the environment. We argue that the effects of COVID-19 are determined mainly by anthropogenic factors which are becoming obvious as human activity diminishes across the planet, and the impacts on cities and public health will be continued in the coming years.


Asunto(s)
Infecciones por Coronavirus , Contaminación Ambiental/estadística & datos numéricos , Monitoreo Epidemiológico , Actividades Humanas/estadística & datos numéricos , Pandemias , Neumonía Viral , Cuarentena/estadística & datos numéricos , COVID-19 , Ciudades , Ecosistema , Humanos , Salud Pública
3.
PLoS One ; 12(10): e0185894, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023480

RESUMEN

The purpose of this work was to quantify the variation of subcanopy spatiotemporal light dynamics over the course of a year and to link it to the physiological ecology of the understory shrub, Lindera benzoin L. Blume (northern spicebush). Covering all seven phenoseasons of a deciduous forest, this work utilized a line quantum sensor to measure the variation in subcanopy light levels under all sky conditions at different times of the day. A total of 4,592 individual subcanopy measurements of photosynthetic photon flux density (PPFD, µmol m-2 s-1) were taken as 15-second spatially-integrated one-meter linear averages to better understand the dynamism of light exposure to L. benzoin. Both open (n = 2, one continuous and one instantaneous) and subcanopy location (n = 25) measurements of PPFD were taken on each sampling date in and near the forested plot (Maryland, USA). In addition, we explored the effect of four photointensity-photoperiod combinations on the growth of L. benzoin under controlled conditions to compare to field conditions. On average, understory PPFD was less than 2% of open PPFD during the leafed months and an average of 38.8% of open PPFD during leafless winter months, indicating that: (1) often overlooked woody surfaces intercept large amounts of light; and (2) spicebush within the plot receive limited light even in early spring before canopy leaf-out. Statistical results suggested phenoseason accounted for nearly three-quarters of the variation in incident radiation between the three plant canopy heights. Spicebush under controlled conditions exhibited the highest fitness levels at an intensity of 164.5 µmol m-2 s-1 for 12-hour duration. Similarly, spicebush growth in the field occurred at subcanopy locations receiving higher incidence of PPFD (i.e., >128 µmol m-2 s-1). Results suggest that the ecological niche for these plants is very specific in terms of light intensity.


Asunto(s)
Luz , Lindera/crecimiento & desarrollo , Estaciones del Año , Maryland
4.
Sci Bull (Beijing) ; 60(15): 1378-1390, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26301116

RESUMEN

Richardson et al. (Sci Bull, 2015. doi:10.1007/s11434-015-0806-z) suggest that the irreducibly simple climate model described in Monckton of Brenchley et al. (Sci Bull 60:122-135, 2015. doi:10.1007/s11434-014-0699-2) was not validated against observations, relying instead on synthetic test data based on underestimated global warming, illogical parameter choice and near-instantaneous response at odds with ocean warming and other observations. However, the simple model, informed by its authors' choice of parameters, usually hindcasts observed temperature change more closely than the general-circulation models, and finds high climate sensitivity implausible. With IPCC's choice of parameters, the model is further validated in that it duly replicates IPCC's sensitivity interval. Also, fast climate system response is consistent with near-zero or net-negative temperature feedback. Given the large uncertainties in the initial conditions and evolutionary processes determinative of climate sensitivity, subject to obvious caveats a simple sensitivity-focused model need not, and the present model does not, exhibit significantly less predictive skill than the general-circulation models.

6.
Plant Signal Behav ; 4(6): 506-13, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19816146

RESUMEN

Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants.


Asunto(s)
Ácido Gálico/efectos de la radiación , Raíces de Plantas/metabolismo , Poaceae/metabolismo , Arabidopsis/citología , Arabidopsis/ultraestructura , Muerte Celular , Ácido Gálico/metabolismo , Concentración de Iones de Hidrógeno , Malonatos/metabolismo , Microtúbulos/ultraestructura , Poaceae/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Suelo/análisis , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...